Reference
ExpFit.Exponentials
ExpFit.balanced_truncation
ExpFit.balanced_truncation
ExpFit.espira1
ExpFit.espira1
ExpFit.espira1
ExpFit.espira1
ExpFit.espira1
ExpFit.espira1
ExpFit.espira2
ExpFit.espira2
ExpFit.espira2
ExpFit.espira2
ExpFit.espira2
ExpFit.espira2
ExpFit.esprit
ExpFit.esprit
ExpFit.esprit
ExpFit.esprit
ExpFit.esprit
ExpFit.esprit
ExpFit.expfit
ExpFit.expfit
ExpFit.expfit
ExpFit.expfit
ExpFit.expfit
ExpFit.expfit
ExpFit.expred
ExpFit.expred
ExpFit.fast_esprit
ExpFit.fast_esprit
ExpFit.fast_esprit
ExpFit.fast_esprit
ExpFit.fast_esprit
ExpFit.fast_esprit
ExpFit.matrix_pencil
ExpFit.matrix_pencil
ExpFit.matrix_pencil
ExpFit.matrix_pencil
ExpFit.matrix_pencil
ExpFit.matrix_pencil
ExpFit.prony
ExpFit.prony
ExpFit.prony
ExpFit.prony
ExpFit.prony
ExpFit.prony
Methods
ExpFit.Exponentials
— TypeExponentials <: AbstractExpFit
A type representing a sum of exponentials of the form
f(t) = ∑ cᵢ exp(-aᵢ(t-t₀))
where aᵢ
and cᵢ
are the exponents and coefficients of the sum, respectively.
Fields
expon::AbstractVector{<:Number}
: The exponentsaᵢ
of the sum of exponentials.coeff::AbstractVector{<:Number}
: The coefficientscᵢ
of the sum of exponentials.
ExpFit.balanced_truncation
— Methodbalanced_truncation(a::AbstractVector{<:Number}, c::AbstractVector{<:Number}, eps::Float64) :: Exponentials
Given the exponents a
and coefficients c
of a sum of exponentials, compute a new sum of exponentials with a reduced number of terms for a given tolerance eps
. The initial exponents must have positive real part.
ExpFit.balanced_truncation
— Methodbalanced_truncation(a::AbstractVector{<:Number}, c::AbstractVector{<:Number}, M::Int) :: Exponentials
Given the exponents a
and coefficients c
of a sum of exponentials, compute a new sum of exponentials with a given number of terms M
. The initial exponents must have positive real part.
ExpFit.espira1
— Methodespira1(f::Vector{<:Number}, dt::Real, M::Int) :: Exponentials
Perform the ESPIRA-I algorithm using discrete data f
and the sampling interval dt
for a given model order M
.
ExpFit.espira1
— Methodespira1(f::Vector{<:Number}, dt::Real, eps::Real) :: Exponentials
Perform the ESPIRA-I algorithm using discrete data f
and the sampling interval dt
for a given tolerance eps
.
ExpFit.espira1
— Methodespira1(func::Function, tmin::Real, tmax::Real, nsamples::Int, M::Int) :: Exponentials
Perform the ESPIRA-I algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given model order M
.
ExpFit.espira1
— Methodespira1(func::Function, tmin::Real, tmax::Real, nsamples::Int, eps::Real) :: Exponentials
Perform the ESPIRA-I algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given tolerance eps
.
ExpFit.espira1
— Methodespira1(func::Function, tmin::Real, tmax::Real, dt::Real, M::Int) :: Exponentials
Perform the ESPIRA-I algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given model order M
.
ExpFit.espira1
— Methodespira1(func::Function, tmin::Real, tmax::Real, dt::Real, eps::Real) :: Exponentials
Perform the ESPIRA-I algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given tolerance eps
.
ExpFit.espira2
— Methodespira2(f::Vector{<:Number}, dt::Real, M::Int) :: Exponentials
Perform the ESPIRA-II algorithm using discrete data f
and the sampling interval dt
for a given model order M
.
ExpFit.espira2
— Methodespira2(f::Vector{<:Number}, dt::Real, eps::Real) :: Exponentials
Perform the ESPIRA-II algorithm using discrete data f
and the sampling interval dt
for a given tolerance eps
.
ExpFit.espira2
— Methodespira2(func::Function, tmin::Real, tmax::Real, nsamples::Int, M::Int) :: Exponentials
Perform the ESPIRA-II algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given model order M
.
ExpFit.espira2
— Methodespira2(func::Function, tmin::Real, tmax::Real, nsamples::Int, eps::Real) :: Exponentials
Perform the ESPIRA-II algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given tolerance eps
.
ExpFit.espira2
— Methodespira2(func::Function, tmin::Real, tmax::Real, dt::Real, M::Int) :: Exponentials
Perform the ESPIRA-II algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given model order M
.
ExpFit.espira2
— Methodespira2(func::Function, tmin::Real, tmax::Real, dt::Real, eps::Real) :: Exponentials
Perform the ESPIRA-II algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given tolerance eps
.
ExpFit.esprit
— Methodesprit(hk::Vector{<:Number}, dt::Real, M::Int; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the ESPRIT algorithm using discrete data hk
and the sampling interval dt
for a given model order M
.
ExpFit.esprit
— Methodesprit(hk::AbstractVector{<:Number}, dt::Real, eps::Real; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the ESPRIT algorithm using discrete data hk
and the sampling interval dt
for a given tolerance eps
.
ExpFit.esprit
— Methodesprit(func::Function, tmin::Real, tmax::Real, nsamples::Int, M::Int; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the ESPRIT algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given model order M
.
ExpFit.esprit
— Methodesprit(func::Function, tmin::Real, tmax::Real, nsamples::Int, eps::Real; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the ESPRIT algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given tolerance eps
.
ExpFit.esprit
— Methodesprit(func::Function, tmin::Real, tmax::Real, dt::Real, M::Int; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the ESPRIT algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given model order M
.
ExpFit.esprit
— Methodesprit(func::Function, tmin::Real, tmax::Real, dt::Real, eps::Real; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the ESPRIT algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given tolerance eps
.
ExpFit.expfit
— Methodexpfit(f::AbstractVector{<:Number}, dt::Real, M::Int; alg::AbstractExpFit=ESPRIT()) :: Exponentials
Estimate the exponents and coefficients of the sum of exponentials for the function f
using the algorithm alg
.
Arguments
f::AbstractVector{<:Number}
: The samples of the function.dt::Real
: The sampling interval.M::Int
: The model order.alg::AbstractExpFit=ESPRIT()
: The algorithm to use for the estimation.
ExpFit.expfit
— Methodexpfit(f::AbstractVector{<:Number}, dt::Real, eps::Real; alg::AbstractExpFit=ESPRIT()) :: Exponentials
Estimate the exponents and coefficients of the sum of exponentials for the function f
using the algorithm alg
.
Arguments
f::AbstractVector{<:Number}
: The samples of the function.dt::Real
: The sampling interval.eps::Real
: The tolerance for the algorithm.alg::AbstractExpFit=ESPRIT()
: The algorithm to use for the estimation.
ExpFit.expfit
— Methodexpfit(f::AbstractVector{<:Number}, dt::Real, eps::Real; alg::AbstractExpFit=ESPRIT()) :: Exponentials
Estimate the exponents and coefficients of the sum of exponentials for the function f
using the algorithm alg
.
Arguments
f::AbstractVector{<:Number}
: The samples of the function.dt::Real
: The sampling interval.eps::Real
: The tolerance for the algorithm.alg::AbstractExpFit=ESPRIT()
: The algorithm to use for the estimation.
ExpFit.expfit
— Methodexpfit(func::Function, tmin::Real, tmax::Real, nsamples::Int, eps::Real; alg::AbstractExpFit=ESPRIT()) :: Exponentials
Estimate the exponents and coefficients of the sum of exponentials for the function func
using the algorithm alg
.
Arguments
func::Function
: The function to estimate the exponents and coefficients.tmin::Real
: The initial time.tmax::Real
: The final time.nsamples::Int
: The number of samples to take in the interval [tmin, tmax].eps::Real
: The tolerance for the algorithm.alg::AbstractExpFit=ESPRIT()
: The algorithm to use for the estimation.
ExpFit.expfit
— Methodexpfit(func::Function, tmin::Real, tmax::Real, dt::Real, M::Int; alg::AbstractExpFit=ESPRIT()) :: Exponentials
Estimate the exponents and coefficients of the sum of exponentials for the function func
using the algorithm alg
.
Arguments
func::Function
: The function to estimate the exponents and coefficients.tmin::Real
: The initial time.tmax::Real
: The final time.dt::Real
: The sampling interval.M::Int
: The model order.alg::AbstractExpFit=ESPRIT()
: The algorithm to use for the estimation.
ExpFit.expfit
— Methodexpfit(func::Function, tmin::Real, tmax::Real, dt::Real, eps::Real; alg::AbstractExpFit=ESPRIT()) :: Exponentials
Estimate the exponents and coefficients of the sum of exponentials for the function func
using the algorithm alg
.
Arguments
func::Function
: The function to estimate the exponents and coefficients.tmin::Real
: The initial time.tmax::Real
: The final time.dt::Real
: The sampling interval.eps::Real
: The tolerance for the algorithm.alg::AbstractExpFit=ESPRIT()
: The algorithm to use for the estimation.
ExpFit.expred
— Methodexpred(a::AbstractVector{<:Number}, c::AbstractVector{<:Number}, M::Int) :: Exponentials
Finding a new set of exponents and coefficients for the sum of exponentials using the balanced truncation method.
Arguments
a::AbstractVector{<:Number}
: The exponentsaᵢ
of the sum of exponentials.c::AbstractVector{<:Number}
: The coefficientscᵢ
of the sum of exponentials.M::Int
: The model order.
ExpFit.expred
— Methodexpred(a::AbstractVector{<:Number}, c::AbstractVector{<:Number}, eps::Real) :: Exponentials
Finding a new set of exponents and coefficients for the sum of exponentials using the balanced truncation method.
Arguments
a::AbstractVector{<:Number}
: The exponentsaᵢ
of the sum of exponentials.c::AbstractVector{<:Number}
: The coefficientscᵢ
of the sum of exponentials.eps::Real
: The tolerance for the balanced truncation method.
ExpFit.fast_esprit
— Methodfast_esprit(hk::Vector{<:Number}, dt::Real, M::Int) :: Exponentials
Perform the Fast ESPRIT algorithm using discrete data hk
and the sampling interval dt
for a given model order M
.
ExpFit.fast_esprit
— Methodfast_esprit(hk::Vector{<:Number}, dt::Real, eps::Real) :: Exponentials
Perform the Fast ESPRIT algorithm using discrete data hk
and the sampling interval dt
for a given tolerance eps
.
ExpFit.fast_esprit
— Methodfast_esprit(func::Function, tmin::Real, tmax::Real, nsamples::Int, M::Int) :: Exponentials
Perform the Fast ESPRIT algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given model order M
.
ExpFit.fast_esprit
— Methodfast_esprit(func::Function, tmin::Real, tmax::Real, nsamples::Int, eps::Real) :: Exponentials
Perform the Fast ESPRIT algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given tolerance eps
.
ExpFit.fast_esprit
— Methodfast_esprit(func::Function, tmin::Real, tmax::Real, dt::Real, M::Int) :: Exponentials
Perform the Fast ESPRIT algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given model order M
.
ExpFit.fast_esprit
— Methodfast_esprit(func::Function, tmin::Real, tmax::Real, dt::Real, eps::Real) :: Exponentials
Perform the Fast ESPRIT algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given tolerance eps
.
ExpFit.matrix_pencil
— Methodmatrix_pencil(hk::Vector{<:Number}, dt::Real, M::Int; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the matrix pencil algorithm using discrete data hk
and the sampling interval dt
for a given model order M
.
ExpFit.matrix_pencil
— Methodmatrix_pencil(hk::AbstractVector{<:Number}, dt::Real, eps::Real; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the matrix pencil algorithm using discrete data hk
and the sampling interval dt
for a given tolerance eps
.
ExpFit.matrix_pencil
— Methodmatrix_pencil(func::Function, tmin::Real, tmax::Real, nsamples::Int, M::Int; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the matrix pencil algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given model order M
.
ExpFit.matrix_pencil
— Methodmatrix_pencil(func::Function, tmin::Real, tmax::Real, nsamples::Int, eps::Real; ncols::Union{Int,Nothing}=nothing)
Perform the matrix pencil algorithm using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given tolerance eps
.
ExpFit.matrix_pencil
— Methodmatrix_pencil(func::Function, tmin::Real, tmax::Real, dt::Real, M::Int; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the matrix pencil algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given model order M
.
ExpFit.matrix_pencil
— Methodmatrix_pencil(func::Function, tmin::Real, tmax::Real, dt::Real, eps::Real; ncols::Union{Int,Nothing}=nothing) :: Exponentials
Perform the matrix pencil algorithm using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given tolerance eps
.
ExpFit.prony
— Methodprony(hk::Vector{<:Number}, dt::Real, M::Int) :: Exponentials
Perform the Prony method using discrete data hk
and the sampling interval dt
for a given model order M
.
ExpFit.prony
— Methodprony(hk::Vector{<:Number}, dt::Real, eps::Real) :: Exponentials
Perform the Prony method using discrete data hk
and the sampling interval dt
for a given tolerance eps
.
ExpFit.prony
— Methodprony(func::Function, tmin::Real, tmax::Real, nsamples::Int, eps::Real) :: Exponentials
Perform the Prony method using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given tolerance eps
.
ExpFit.prony
— Methodprony(func::Function, tmin::Real, tmax::Real, nsamples::Int, M::Int) :: Exponentials
Perform the Prony method using a function func
in the range [tmin,tmax] and nsamples
sampling points for a given model order M
.
ExpFit.prony
— Methodprony(func::Function, tmin::Real, tmax::Real, dt::Real, eps::Real) :: Exponentials
Perform the Prony method using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given tolerance eps
.
ExpFit.prony
— Methodprony(func::Function, tmin::Real, tmax::Real, dt::Real, M::Int) :: Exponentials
Perform the Prony method using a function func
in the range [tmin,tmax] and a sampling interval dt
for a given model order M
.